AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots.

نویسندگان

  • Panglian Xu
  • Dongke Yuan
  • Ming Liu
  • Chunxin Li
  • Yiyang Liu
  • Shengchun Zhang
  • Nan Yao
  • Chengwei Yang
چکیده

Plants maintain stem cells in meristems to sustain lifelong growth; these stem cells must have effective DNA damage responses to prevent mutations that can propagate to large parts of the plant. However, the molecular links between stem cell functions and DNA damage responses remain largely unexplored. Here, we report that the small ubiquitin-related modifier E3 ligase AtMMS21 (for methyl methanesulfonate sensitivity gene21) acts to maintain the root stem cell niche by mediating DNA damage responses in Arabidopsis (Arabidopsis thaliana). Mutation of AtMMS21 causes defects in the root stem cell niche during embryogenesis and postembryonic stages. AtMMS21 is essential for the proper expression of stem cell niche-defining transcription factors. Moreover, mms21-1 mutants are hypersensitive to DNA-damaging agents, have a constitutively increased DNA damage response, and have more DNA double-strand breaks (DSBs) in the roots. Also, mms21-1 mutants exhibit spontaneous cell death within the root stem cell niche, and treatment with DSB-inducing agents increases this cell death, suggesting that AtMMS21 is required to prevent DSB-induced stem cell death. We further show that AtMMS21 functions as a subunit of the STRUCTURAL MAINTENANCE OF CHROMOSOMES5/6 complex, an evolutionarily conserved chromosomal ATPase required for DNA repair. These data reveal that AtMMS21 acts in DSB amelioration and stem cell niche maintenance during Arabidopsis root development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AtMMS21, an SMC5/6 Complex Subunit, Is Involved in Stem Cell Niche Maintenance and DNA Damage Responses in Arabidopsis Roots1[C][W]

Plants maintain stem cells in meristems to sustain lifelong growth; these stem cells must have effective DNA damage responses to prevent mutations that can propagate to large parts of the plant. However, the molecular links between stem cell functions and DNA damage responses remain largely unexplored. Here, we report that the small ubiquitin-related modifier E3 ligase AtMMS21 (for methyl metha...

متن کامل

The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana.

Sister chromatids are often arranged as incompletely aligned entities in interphase nuclei of Arabidopsis thaliana. The STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC) 5/6 complex, together with cohesin, is involved in double-strand break (DSB) repair by sister chromatid recombination in yeasts and mammals. Here, we analyzed the function of genes in Arabidopsis. The wild-type allele of SMC5 is esse...

متن کامل

Scaffolding for Repair: Understanding Molecular Functions of the SMC5/6 Complex

Chromosome organization, dynamics and stability are required for successful passage through cellular generations and transmission of genetic information to offspring. The key components involved are Structural maintenance of chromosomes (SMC) complexes. Cohesin complex ensures proper chromatid alignment, condensin complex chromosome condensation and the SMC5/6 complex is specialized in the main...

متن کامل

Non-SMC Element 2 (NSMCE2) of the SMC5/6 Complex Helps to Resolve Topological Stress

The structural maintenance of chromosomes (SMC) protein complexes shape and regulate the structure and dynamics of chromatin, thereby controlling many chromosome-based processes such as cell cycle progression, differentiation, gene transcription and DNA repair. The SMC5/6 complex is previously described to promote DNA double-strand breaks (DSBs) repair by sister chromatid recombination, and fou...

متن کامل

Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression.

Correct duplication of stem cell genetic material and its appropriate segregation into daughter cells are requisites for tissue, organ and organism homeostasis. Disruption of stem cell genomic integrity can lead to developmental abnormalities and cancer. Roles of the Smc5/6 structural maintenance of chromosomes complex in pluripotent stem cell genome maintenance have not been investigated, desp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 161 4  شماره 

صفحات  -

تاریخ انتشار 2013